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Abstract—Recently, carrying control signals on passing data
packets has emerged as a promising direction for efficient control
information transmission. With control messages carried on data
payload, the extra air time needed for control packets like
RTS/CTS is eliminated and thus channel utilization is improved.
However, carrying control signals on the data payload of a
packet requires the data packet to have a sufficiently large SNR,
otherwise both the data packet and the control messages are lost.
In this paper, we propose Hitchhike, a technique that utilizes the
preamble field to carry control messages. Hitchhike completely
decouples the control messages from the payload and therefore
the superposition of (multiple) control messages has little adverse
effect on the operation of the payload decoding. We implement
and evaluate Hitchhike in the USRP2 platform with 5 nodes.
Evaluation results demonstrate the feasibility and effectiveness of
Hitchhike. Compared with the state-of-the-art, e.g., Side-channel
in 802.15.4, Hitchhike improves the detection accuracy of control
messages by 40% and reduces the data loss caused by control
messages by 15%.

I. INTRODUCTION

Due to the scarcity of wireless spectrum, it is a common
practice within wireless protocols to send control messages
as data messages, see e.g., ZigBee and Wi-Fi. As a prime
example, the control messages RTS/CTS used in CSMA/CA-
type of protocols are strictly speaking data packets containing
control information. While this is certainly a very convenient
way of disseminating and exchanging control information,
the overhead is significant: these extra data packets occupy
a disproportionately large portion of air time compared to the
amount of information they carry [1].

Recently, there has emerged a promising new direction for
efficient control message delivery, one that tries to build the
control plane on top of real data packets, see e.g., [2], [3]. The
basic idea is to embed control information in data messages
so the two may be transmitted concurrently. This is illustrated
in an example shown in Fig. 1(a). Bob wants to transmit
a control message to Carol telling her that he is Bob (the
equivalent of the “HELLO” control packet in many protocols).
Instead of using a separate data packet for this, Bob tries to
ride his message on top of a data packet from Alice to Carol
as follows. He intentionally interferes a few bits of Alice’s
packet and uses these bits to convey his control information.
Carol receives the (slightly) corrupted data packet and extracts
the control information from Bob by calculating the relative
distance among those bits. The original data message can
also be recovered due to the modulation redundancy [2] in
physical layer (PHY) implementation. This so-called in-band
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Fig. 1. Illustration of Hitchhike compared with payload based mechanism.
In Side-channel (Fig. 1(a)), the control message from Bob is carried on the
payload of the packet form Alice to Carol. While in Hitchhike (Fig. 1(b)),
the control message is carried on the preamble of the packet.

control message1 transmission mechanism eliminates the extra
transmission time for control messages and therefore improves
channel utilization.

However, there are three problems with the above mech-
anism. First of all, this mechanism requires high SNR for
the data packet. The basic assumption for this mechanism
to work is that the payload has a large redundancy, while
in reality, due to the existence of noise and interference,
the redundancy margin may be very limited. As a result, it
is possible to corrupt the data bits in the payload beyond
recovery by inserting the control message, especially under
low SNR conditions. Second, even if the control message
does not adversely affect the decoding of the payload, it may
be difficult to correctly decode the control message under
low SNR conditions. There may be other “error bits” caused
by noise and unintentional interference, which could mislead
the receiver to incorrectly decode and interpret the control
message. Lastly, this mechanism suffers when multiple users
try to transmit control messages via the same data payload.
In Fig.1(a), if another user, say David, also transmits his
control message on top of Alice’s packet, then the two control
messages interleave and Carol may not be able to decode either
of them.

In this paper, we propose Hitchhike, a novel technique that
carries control messages on the preamble rather than data
payload, and decodes them using correlation. As shown in
Fig. 1(b), the control message from Bob is sent as a unique

1We use control for short in the rest of this paper.
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signal pattern superposed on the preamble field of the packet
form Alice to Carol. Carol then detects both the preamble of
the packet and the control signal from Bob by correlation.
Compared with payload-based mechanism, preamble-based
control plane has the following advantages. First, by carrying
the control in the preamble field, the data payload is decoupled
from control signaling. As a result, the decoding of control
does not interfere with the decoding of data bits. Indeed,
detecting a preamble requires far lower SNR than decoding
a bit does, thus using this technique control messages can be
transmitted at extremely low SNR levels, without affecting
their detection accuracy. This also means that, there is no in-
creased SNR requirement on the payload as it is not threatened
by interference from the control message. Last but not least,
multiple control messages can be transmitted concurrently over
a common data packet’s preamble field and detected using a
bank of correlators.

This technique, however, is not without its own challenges.
First of all, the superposition of control signals over a preamble
may cause missed detection of the preamble which leads
the whole packet to be missed. To address this, we need to
carefully design orthogonal codes for control messages that
have appropriate lengths with respect to the signal pattern
of the preamble. The second challenge lies in the detection
and recovery of control information from the mixed control-
preamble signal. To eliminate the impact of the preamble in
the detection of control, we design a subtraction-detection
algorithm in which the preamble signal is subtracted from the
mixed signal to provide higher detection accuracy for control
signals. Finally, we need to ensure that the control signals can
ride exactly on the preambles, i.e., sufficiently synchronized
with the preamble. For this we propose to utilize the beginning
part of a preamble a synchronization mechanism signaling the
incoming of a preamble.

We design and implement Hitchhike on the GNURa-
dio/USRP2 platform, and our experiments involve 5 such
nodes. Our evaluation results indicate that placing the specially
designed control signals on a preamble has little adverse
effect on the normal operation of the preamble. Moreover, the
control signals carried by the preamble can also be detected
accurately. Compared with the state-of-the-art technique, Side-
channel [2], the detection accuracy of Hitchhike is 40% higher
and the side effect upon data decoding is 15% lower in
average. Our main contributions are summarized as follows:

• We propose a novel concept that utilizes preambles for
carrying control information. We contrast this with the
payload-based mechanisms and highlight its advantages
in being able to operate under lower SNR requirements
and in supporting multiple users.

• We design and implement Hitchhike, a mechanism that
uses the above concept to deliver control messages
in 802.15.4 networks. We design orthogonal codes for
control messages and develop the subtraction-detection
algorithm for their detection.

• We validate the feasibility of Hitchhike and evaluate its
performance with 5 nodes on the GNURadio/USRP2
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Fig. 2. Format of a packet in the 802.15.4 PHY layer. The preamble field
has a repeated signal pattern.

platform. The results indicate that the preamble and
the designed control messages can work in harmony in
Hitchhike.

The rest of this paper is organized as follows. Section II
details the motivation of this work. In Section III we introduce
the design detail of Hitchhike. In Section IV, we present
the implementation of Hitchhike, followed by a performance
evaluation in Section V. We discuss the potential applications
of Hitchhike in Section VI and the related work in Section VII.
We conclude the paper in Section VIII.

II. MOTIVATION

In this section we detail the motivation behind the concept
and design of Hitchhike. We start with a preliminary on
the use of preamble and related physical layer details. We
then describe a gap between the required SNRs in detecting
the preamble and decoding the data payload. We end by
presenting the main challenges in using preambles to carry
control messages.

A. A Primer on Preamble

In wireless networks with IEEE 802.15.4 [4] and 802.11 [5]
PHY layer, a data packet is mainly composed of four parts:
the preamble field, SFD (Start of Frame Delimiter), length
and the payload field. As shown in Fig. 2, the preamble
is the beginning of the packet followed by SFD and Len,
and the rest is the payload. Preamble is primarily used for
a receiver to detect the incoming/arrival of a packet and
perform synchronization needed for packet reception. The SFD
field indicates the start of the MAC sublayer frame and Len
specifies the length of the payload.

A preamble has a known repeated pattern so that the receiver
can use auto-correlation with the received signal to determine
its presence in the air. To ensure detection robustness, a
preamble is designed to have a repeated pattern. For example,
under the 802.15.4 specification, a preamble contains 32 binary
‘0’s which is in fact 8 repeated ‘0’ symbols. The correlation
operation would output a spike if a preamble is present in the
signal. At the same time, the receiver synchronizes itself with
the sender and calculates parameters like carrier frequency
offset (CFO). It begins receiving the payload signal after the
SFD and length checking.

B. The SNR Gap: Detection vs. Decoding

As mentioned above, a preamble is detected via correlation,
which is different from the decoding operation for a payload.
In short, determining an unknown bit sequence is much harder
than detecting a known pattern. The reasons are as follows.
First, correlation is a coarse decision process and has relatively
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Fig. 3. The SNR gap between decoding the payload and detecting the
preamble. The gap can be as large as almost 10 dB.

large tolerance for errors, while decoding a bit entails a high
SNR requirement and needs to map the received signal to
a constellation diagram accurately to decode a bit. Second,
a preamble is composed of repeated signal patterns, which
further enhances the detection robustness. By comparison, the
redundancy provided by coding and modulation schemes [4],
[5] for the data payload is not as much.

To clearly see the gap between what’s needed to detect a
preamble vs. decode a packet, we conduct an experiment with
two USRP2 devices running with 802.15.4 PHY and placed 10
feet apart. One is used as a transmitter and the other a receiver.
Packets of length 100 bytes are sent from one to the other with
different SNRs, ranging from -10 dB to 15 dB. The received
signal trace is collected and decoded using standard decoding
block for IEEE 802.15.4 on MATLAB. The experiments are
repeated for five times.

Fig. 3 shows the result for the detection of the preamble
and for the decoding of the payload, respectively. In each
case we see a very clear threshold in acceptable SNR for
the corresponding operation to be considered successful. For
the decoding of the payload, this threshold is around 7 dB:
the payload decoding rate is > 90% above this level, and
falls precipitously to nearly zero when the SNR is below 3
dB. For the detection of preambles, this threshold is around
-3 dB, significantly below what’s required for the payload.
This finding coincides with the report in [1], [6]. Further, we
see that the detection of the preamble degrades much more
gracefully: it stays above 20% with the SNR falling below -7
dB.

If we set the decoding/detection requirement to above 90%,
then this SNR gap is about 10 dB from our experiment.
The gap comes from the correlation mechanism and the
inherent redundancy in a preamble structure with repeated
signal patterns. This gap suggests great potential for preambles
to become a carrier of control information. Because of the
physical separation, delivering control over preambles does
not affect the data bits. What is more, as preambles have low
SNR requirement, i.e., the preamble pattern can be recognized
with low SNR, there is more robustness in our ability to detect

the control messages. We give detailed analysis in the next
section.

C. Challenges in Using the SNR Gap

The introduction of control messages on a preamble should
not adversely affect the functionality of the preamble. In
particular, the preamble is used to detect the beginning of a
data packet and perform synchronization between a receiver
and a transmitter. If the insertion of control messages affect
the operations, then the receiver may miss the entire packet.

Second, the detection accuracy of control messages carried
in the preamble needs to be sufficiently high, i.e., with
low false positive and false negative probabilities, as control
information is extremely important. If the control signal is
easily drowned by the preamble signal then this scheme would
not be very useful even if it doesn’t harm the underlying,
original operation of data communication.

We next detail the design of Hitchhike to tackle theses
problems.

III. DESIGN OF HITCHHIKE

In this section, we describe the main design of Hitchhike.
We first present the code design for control messages to ensure
little mutual influence between the preamble and the control
messages. Then we describe the design of detection module
for the control messages.

A. Design of Control Messages

In order to decouple the control messages from the preamble
and detect possibly multiple control messages/signals from
the preamble, it is clear that the control signals need to
be orthogonal to the preamble signal as much as possible.
In later analysis we show that the detection accuracy is
proportional to how the control signals are orthogonal to the
preamble. Similarly, the control signals need to have as little
cross-correlation among themselves as possible. Strong cross-
correlation among control signals will result in false detection
of a non-signaled message.

In addition, the length of the control signal needs to be
carefully designed due to an inherent tradeoff: longer control
signals will have a larger adverse effect on the preamble
detection, while shorter control signals lower the detection
accuracy of the control messages as well as the capacity in
carrying control information.

Below we use 802.15.4 as an example to illustrate the design
choice of control signals/codes against the preamble. Under
the 802.15.4 specification, DSSS (Direct Sequence Spread
Spectrum) is used as the modulation scheme. With DSSS, a
data symbol containing four digital bits is spread to a 32-
chip sequence. The chips are the transmitted signal elements.
Therefore, the 8-symbol preamble in 802.15.4 is in fact a
sequence of 256 chips. Without loss of generality, we denote
the length of the preamble field by l (chips), the length of a
control signal by x chips, and by m the number of chips per
symbol.

In general, the preamble length l determines its detection
accuracy [7]. This is because a preamble contains a repeated
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signal pattern, so the larger the value of l, the more redundancy
there is in the preamble for the detection to be accurate.
For instance, with the cc2420 receiver [8], a commonly used
802.15.4 receiver chip, the preamble length can be configured,
with a minimum length as small as 2 symbols, indicating the
possibility of transmitting a very short preamble that can be
detected. This also means that with an 8-symbol preamble,
the remaining 6 symbols serve purely as redundancy, and can
potentially be used for other purposes.

Consider now using x out of the l chips to carry a control
signal. If the preamble can be detected with probability p from
a single symbol (p is naturally a function of the preamble
SNR), then taking away x chips to carry control signals leaves
l − x chips, or (l − x)/m repeated symbols, and a detection
probability of:

P (x) = 1− (1− p)
l−x
m (1)

At the same time, the capacity, i.e. the number of orthogonal
codes that may be packed in the space of x-chip signals, is
proportional to x. Thus we see clearly the tradeoff in selecting
a good value of x: larger x benefits the detection of control and
the capacity of control information, but decreases the accuracy
of preamble detection.

In our design, we wish to use a minimum length of chips
to generate a large number of control codes that have low
correlation with the preamble and low cross-correlation within
the control codes. We implement the control codes with PN
sequences in IEEE 802.15.4 [4] and use the length of x = 64.

B. Detecting the Control Message

We next describe how the control messages carried in the
preamble field can be detected with the correlation detection
technique [6], [9], [10]. In order to be self-contained, we
start with a brief introduction to the principle of correlation
detection for multiple signals even though this is standard
communication basics.

1) Correlation detection of multiple signals: In wireless
communication, the received symbols differ from the transmit-
ted symbols due to channel distortion and interference. This is
often captured by the following expression, with yi[n] denoting
the nth received symbol from sender i, after attenuation and
phase shift to the transmitted symbol xi[n] caused by the
wireless channel [11]:

yi[n] = Hixi[n] + wi[n] (2)

where Hi is the channel coefficient between the transmitter
and the receiver and wi[n] a random noise. Suppose that
N users transmit their signals simultaneously, the received
composite signal can be represented as with w =

∑
i wi

denoting the composite noise signal:

y[n] =

N∑
i=1

Hixi[n] + w[n] (3)

The correlation-based detection mechanism works as fol-
lows. Denote by C(s, y, q) the correlation coefficient between
a received signal y and a known pattern s (either the preamble

or a specific control signal pattern) of length L at a shifted
position q, given by:

C(s, y, q) =

L∑
k=1

s∗[k]y[k + q] (4)

where s∗[k] is the complex conjugate of s[k]. The value of
C(s, y, q) is low when the signal s is not present in y, and
even when the signal s is in y, the correlation values has a
spike only when y[k+ q] aligns well with the beginning of s.
When the received signal matches s and they align well, the
correlation coefficient of the spike is given by:

C(s, y, q) =

L∑
k=1

s∗[k]y[k + q] = H

L∑
k=1

|s[k]|2 (5)

When y is a composite signal containing multiple signal
patterns of interest, including both the preamble and control
messages in our case, we will try to detect the presence of the
preamble first, followed by each control messages in serial.
This can be done by correlating the received composite signal
y with each known signal pattern. Due to the orthogonality
between the preamble and the control signals, each correlation
operation is enhanced on one signal of interest and suppresses
the others, and thus can determine the presence of each signal,
one at a time. More precisely, if present in the received com-
posite signal y are the transmitted preamble s1 from sender
1, as well as control message si from sender i, i = 2, · · · , N ,
then we will have (omitting the noise terms for simplicity):

C(si, y, q) =

L∑
k=1

s∗i [k]

N∑
j=1

yj [k + q]

=

L∑
k=1

s∗i [k]Hisi[k + q] +

L∑
k=1

∑
j 6=i

s∗i [k]Hjsj [k + q]

=

L∑
k=1

s∗i [k]Hisi[k + q]

= Hi

L∑
k=1

|si[k]|2 (6)

due to the orthogonality between si and sj , i 6= j. We
normalize the correlation value and detect the presence of
a signal by its strength using a threshold. The normalized
correlation is as follows:

N(s, y, q) =
C(s, y, q)∑L
k=1 |s[k]|

(7)

When s is present in y, the theoretical normalized correlation
value is N(s, y, q) = 1.

2) The Subtraction-Detection Algorithm: In theory, as
shown above, we can use Eq. 7 to detect the control mes-
sages. However, in practice, the relative strengths between the
preamble signal and control signals and the non-complete or-
thogonality affect the correlation value because the signals and
the channel coefficients cannot be completely independent [6]:
the stronger signal dominates the output of the correlation.

To overcome this problem, we adopt a signal subtraction
technique, similar to the idea of successive signal cancellation
[12]. Specifically, the receiver subtracts the preamble signal
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Algorithm 1 The Subtraction-Detection Algorithm
Input: received signal y, known preamble p, controlling messages

set S and threshold set T .
Output: The decision set D

1: /* Correlate and subtract preamble from y */
2: Calculate C(p, y, q) with Eq. 7
3: if C(p, y, q) > Tp then
4: dp ← 1
5: Recover p′

6: y ← y − p′

7: /* Correlate control signals */
8: for all si ∈ S do
9: Calculate C(si, y, q) with Eq. 7

10: if C(si, y, q) > Ti then
11: di ← 1
12: end if
13: end for
14: return D
15: end if

from the mixed signal to enhance the correlation values
for control messages detection. As we have mentioned, the
preamble signal is a sequence of repeated symbol pattern, we
can use any individual received symbol and repeat the symbol
to recover the entire preamble, considering that the channel
condition is relatively static during a short time spans [13]. In
our design, we use the symbols that are not overlapped with
control messages as a “clean” symbol. Then this clean symbol
is subtracted from the mixed signal to obtain the remainder that
contains the control signals.

It should be mentioned that the received signal contain-
ing the preamble and control needs to be stored. After the
preamble is detected and the clean symbol found, this stored
signal then goes through the subtraction and correlation oper-
ations. Compared to directly operating on the original signal,
correlation using the processed signal leads to more accurate
detection results. Note that the subtraction operation doesn’t
require tight synchronization in our case as we do not need
to decode the signal and thus coarse subtraction suffices. The
subtraction-detection results are presented in Section V.

Combine the correlation and subtraction techniques above,
we propose the subtraction-detection algorithm in Alg. 1. Here
y denotes the received signal, p is the known preamble pattern,
and S = {s1, s2, ...sk} represents the set of control signals.
The vector D = {d1, d2, ...dk} (dp for the preamble) records
the detection results, with di = 1 denoting the presence of
control message si and 0 otherwise. As shown, the preamble
is detected first by correlating y with p, and then the pure
preamble signal p′ is obtained by repeating any clean symbol
in y. The pure control signal is obtained by subtracting p′ from
y. For the resulting signal, the control signals are sequentially
correlated. Finally, the result D is returned.

C. Other practical implementation issues

1) Frequency offset: Due to manufacturing limitations, the
transmitter and the receiver has a center frequency offset δf .
This offset will also affect the detection accuracy. However,
based on the finding in [6], the frequency offset is relatively
static and can be estimated based on history information.
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Fig. 4. Implementation of transmitter and receiver module in Hitchhike.

Besides, according to our experiment measurement, the offset
is usually small in homogeneous networks, e.g., 262.85 Hz
in ZigBee networks on average [14]–[16]. Therefore in the
current implementation of our detection algorithm, we omit the
frequency offset caused by activities within the same protocol.

2) When to get on board: Earlier we described how the
redundancy in a preamble (the repeated signal pattern) allows
us to use a few symbols to carry control signals. A prerequisite
to this is for the transmitters of control messages to be able to
quickly detect the presence of a preamble and be sufficiently
synchronized to the incoming transmission. Again using the
redundancy, the sender does so by detecting the presence of
the preamble using only the first few symbols as described
earlier.

D. Complexity and Overhead

Hitchhike incurs limited overhead and needs no modifica-
tion to the protocol and hardware. The extra requirement only
lies in the detection, as it costs little to generate the control
messages and store the signal. For example, the devices only
need to store the signal trace during preamble period, which is
of only 256 chips in IEEE 802.15.4 [4]. For signal correlation,
with a control messages set which has N control messages,
the computational complexity of the correlation process is
bounded with O(N).

IV. IMPLEMENTATION

This section describes our implementation of the Hitchhike.
We implement the transmitter and receiver components of
Hitchhike on GNURadio/USRP2 software radio platform. We
use the RFX2400 daughterboards which operate in the 2.4
GHz range. The software for the signal processing blocks is
from the open source GNURadio library.

A. Transmitter Implementation

Fig. 4(a) presents the implementation of the transmitter in
Hitchhike. A control message generation block is added to
the standard transmitter design. Therefore the transmitter is
able to transmit both data packet and control commands. A
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Fig. 5. Overview of the evaluation environment. 5 USRP2 devices are used
in our experiments and the evaluation is conducted in an indoor environment.

control message goes through the same modulation process
as data does, while the data packet transmission process is
unchanged.

B. Receiver Implementation

The implementation of the receiver is shown in Fig. 4(b).
A detector block for detecting the control messages contained
in the preambles has been added to the standard receiver
design. The detector contains two parts: the subtractor and
the correlator. The subtractor module subtracts the preamble
signal from the mixed signal with the rebuilt preamble pattern.
The correlator block correlates the remained signal with the
predefined codes in the control messages set. Finally the
detected messages are passed to the upper layer applications.

V. EVALUATION

We evaluate Hitchhike in this section. Fig. 5 shows the eval-
uation environment and devices. We use 5 USRP2 nodes with
4 transmitters and 1 receiver. Among the transmitters, one is
transmitting data packets while the rest three transmit control
messages. The transmitters and the receiver are connected to
a PC respectively via a switch.

We benchmark Hitchhike’s performance with the following
metrics in our evaluation:
• The detection error introduced by the control signals on

the preamble.
• The detection accuracy of control messages and how well

the subtraction-detection algorithm works.
• The performance of Hitchhike against the state-of-the-art

Side-channel [2] in terms of detection accuracy and loss
rate with different SNR.

A. Experiment Settings

Modulation scheme. Hitchhike takes modulation and de-
modulation as a black box and works with various modulation
schemes. In our implementation, however, we use 802.15.4
DSSS modulation to validate Hitchhike.

Test scenarios. We validate Hitchhike in environments
without interference from other protocols like Wi-Fi tech-
nology. In the future, we may extend the experiments under
the interference from other 2.4 GHz protocol like Wi-Fi and
Bluetooth.

Parameter settings. The control messages have length of
64 chips (2 symbols), the data packet have length of 30 bytes.
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Fig. 6. Illustration of received signal traces. Fig. 6(a) depicts the signal trace
when only one control signal is added on the preamble. Fig. 6(b) is the case
when three control messages are put on the preamble.

The preamble has length of 8 symbols, the same as specified
in the IEEE standard [4]. The center frequency is set to 2.432
GHz, which overlaps with the Wi-Fi band. To test the detection
accuracy for both the preamble and the control messages,
we vary the transmit power of the preamble and the control
messages. The powers are configured to have SNR range from
10 dB to 26 dB (by first measuring the noise power and
setting the amplitude of the transmitters), therefore the SNR
difference between the preamble and the control signal can
range from -16 dB to 16 dB. The data transmitters and the
control transmitters transmit 100 packets at each SNR level.
The detection threshold for the control messages is set to 0.3.

B. Signal Trace Analysis

We begin by showing the representative signal traces when
control is superposed in the way described above, in Fig. 6.
Each trace is a whole packet and a dotted line delineates the
preamble and the payload. Fig. 6(a) shows a single control
signal added onto the preamble, resulting in the observed
spikes and fluctuation in the preamble field while the payload
is unaffected. Fig. 6(b) shows three control signals added onto
a preamble. The signal in the overlapping period is enhanced,
seen by the power level of the composite signal (the red dashed
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TABLE I
FREQUENCY OFFSET WITHIN ZIGBEE DEVICES.

Estimated CFO (Hz) avg. min. max.

With Control 262.85 181.43 385.81
Without Control 151.26 112.56 181.43

line).
This set of traces also serve to highlight our testing scenar-

ios. We first evaluate the detection accuracy of the preamble
after the insertion of the control messages. We then examine
the detection of the control messages from the mixed signals
with Alg. 1.

C. Detection Error of the Preamble

We first examine what effect control messages have upon
the operation of a preamble by measuring the detection error
of a preamble when control messages are added. We will limit
our attention to a single control signal in this subsection.

Detection error. Fig. 7 shows the detection error when
there is no Wi-Fi interference. As expected, the preamble
detection error decreases as the SNR difference between the
two (preamble and control) increases. Overall the addition of
control messages increases the preamble detection error only
slightly, e.g., less than 1% on average. This shows that the
orthogonality of the signals, as well as the length of the control
signal have been chosen appropriately.

Estimated frequency offset. To further investigate the rea-
son behind the increased error rate, we analyze the estimated
frequency offset of the received signal. As mentioned in
Section III, a receiver performs frequency offset estimation
using FFT and finds the center frequency by looking for the
frequency with the strongest power. We measure the estimated
frequency offset with the signal traces shown in Fig. 6. When
there is no interference from Wi-Fi, the estimated frequency
offset is always less than 400 Hz, with and without the control
messages, as is shown in Tab. I.

In summary, we conclude that the superposition of control
messages with length of 64 chips on the preamble cause
little adverse effect (less than 1% additional error rate and
no significant frequency offset).
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Fig. 8. Detection result for control message in single control user scenario.
Fig. 8(a) shows the comparison of correlation value before and after the
preamble is subtracted. Fig. 8(b) shows the detection accuracy with Alg. 1.

D. Detection Error of Control Messages

Next we evaluate the detection results of control messages.
We first calculate the correlation coefficient of the control
signal without subtracting the preamble, and then compare this
with that after the adoption of Alg. 1 to verify the effectiveness
of the algorithm. We also measure the detection accuracy at
various SNR differences.

Correlation coefficient. The bars with mark in Fig. 8(a)
show the correlation result for control message without sub-
tracting the preamble signal. We see that the correlation values
are only 0.1 above the detection threshold 0.3, when the
control SNR is below that of the preamble by more than 8
dB. It is also interesting to see that the correlation coefficient
for the control message doesn’t depend heavily on the SNR
difference. For example, when the SNR difference are -16 dB
and 16 dB, respectively, the resulting correlation values differ
only by 0.1.

The subtraction algorithm. The bars without marks in
Fig. 8(a) show the corresponding correlation value after the
preamble signal is subtracted from the mixed signal. Compared
with the results before subtraction, the correlation value at
each SNR level is improved by at least 0.2, which directly
enhances the detection accuracy for control messages. The
absolute value for the correlation coefficient is nearly 0.6,
0.3 higher than the threshold, even in the presence of noise.
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Fig. 9. Performance comparison with Side-channel. Fig. 9(a) shows that the detection accuracy of Hitchhike is high even when the SNR of data packet is
low. Fig. 9(b) depicts the loss rate of data packets caused by the two approaches.

This evaluation result indicates that our subtraction-detection
algorithm works quite well in enhancing the control detection
accuracy, especially when the preamble dominates the control
signals (SNR difference from -16 dB to 0 dB).

Detection accuracy. Fig. 8(b) presents the detection accura-
cy using Alg. 1, in the form of false positive and false negative
ratios. The former mainly comes from the imperfect cross-
correlation among control messages, and the latter is due to
interference and noise. In our design, low false negative ratio
is more desirable as control messages are important. As shown
and to be expected, the false positive and negative ratios are
nearly 0 when the SNR of the control signal is larger than that
of the preamble. While the errors increase when the preamble
gets stronger by comparison, they are both at reasonably low
levels, e.g., under 15% for false positive and under 6% for false
negative even when control is 16 dB below the preamble.

E. Comparison with Payload-based Mechanism
We end this section with a comparison between Hitchhike

and the state-of-the-art protocol Side-channel [2] for 802.15.4
networks. We examine two metrics: the detection accuracy
of control messages and the loss rate of data packets caused
by control messages. The data packet and the control signal
use the same transmitting power and the SNR is set from 0
dB to 26 dB. The control message in Hitchhike has a length
of 64 chips and data packet has a length of 30 bytes. We use
two methods to encode control messages in Side-channel. The
first is to interfere single chips and use 4 chips in each symbol
(Side-channel, k = 1) and the second is to use two consecutive
chips (Side-channel, k = 2). The detection accuracy and the
extra packet loss rate are obtained by analyzing the received
signal trace on receiver side. This evaluation is repeated for
10 rounds at each SNR level.

Fig. 9(a) shows the detection accuracy at different SNR
levels of the data packet. We see that the detection accuracy
for Side-channel is much lower than that of Hitchhike in low
SNR conditions. In particular, it is less than 40% when SNR
falls below 8 dB. The reason behind is that noise and external
interference cause false “error” bits that destroy the encoded
messages. We do see that using two consecutive chips has

better accuracy than using a single chip. Lastly, the accuracy
of Hitchhike remains high at all SNR levels.

We further analyze the impact control messages have on
packet decoding and the result is shown in Fig. 9(b). In all
cases data loss decreases with the increase in packet SNR,
much as expected. In the case of Side-channel, single-chip
performs better than 2-chip interference, so there is a clear
tradeoff between high control detection accuracy and low
data loss for Side-channel. On the other hand, Hitchhike
demonstrates both high detection ratio and low error rate on
packet decoding (across all SNR levels).

From this evaluation, we conclude that at high SNRs,
both Side-channel and Hitchhike demonstrate high detection
accuracy and less impact on packet decoding. However, when
SNR decreases, Hitchhike performs better in the two metrics,
especially with SNR locating within 8 dB to 16 dB where data
packet has limited redundancy margin. When SNR is below
8 dB, where data packets become easy to be corrupted (refer
to Fig. 3), Hitchhike can still use these corrupted packets for
conveying the important control information.

VI. DISCUSSION

As a PHY layer technique, Hitchhike can be utilized to
benefit a variety of upper layer applications. The essential
feature of Hitchhike is that by carrying the small control
messages on the preambles, the receiver can receive both the
data packets and the control messages, with little overhead and
performance degradation. Here we demonstrate two applica-
tions, priority scheduling and neighbor discovery; the detailed
implementation of these applications is left for future work.

Efficient priority scheduling. First, Hitchhike can be used
to enhance the efficiency of priority scheduling. In wireless
networks, priority scheduling is often required for provid-
ing QoS (quality of service), see e.g., [17]–[20]. Hitchhike
is useful in scheduling transmitters with different priorities,
especially when the schedule is urgent and efficiency is
desirable. Different from traditional scheduling mechanisms, a
receiver in Hitchhike can schedule transmitters by inspecting
the received packet. Specifically, the receiver looks into the
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preamble of the received packet and detects the control mes-
sages carried on the preamble. As multiple control messages
are supported on a single preamble, the receiver is able to
learn about all transmitters, their readiness to send packets,
and their priorities by interpreting the control messages.

Fast neighbor discovery. Another application is in neighbor
discovery [21]. In wireless networks like Wi-Fi, the users
around an AP may change dynamically. A critical task for
the AP is to learn the new comers as soon as possible [22].
Hitchhike can be applied in this scenario. The newly-joining
devices may use a simple control signal to identity itself riding
on someone else’s packet. Without any extra overhead, the
AP can know the newly joining devices while receiving data
packets.

VII. RELATED WORK

Recently, there has been a lot of work trying to improve the
delivery efficiency of control messages. In general, they can be
classified into out-of-band and in-band control. Note that out-
of-band control here simply means the control messages are
physically separated from data packets in time domain while
in-band control is not.

Out-of-band control. Motivated by the fact that control bits
in a control packet occupy a small portion of the whole packet,
the authors in [1] propose to use short command sequences
to replace control packets. The work Gap-sense [23] and
Esense [24] code the control messages with signal pulses and
energy bursts. However, the out-of-band mechanism cannot
eliminate the extra air time of the control messages.

In-band control. Another promising thread is to con-
currently transmit the control messages with data packets.
µACK [25] uses a portion of channel resources for dedicated
control transmission. The work in [26] for the first time
analyzes the chip error pattern caused by interference and
utilizes this pattern to convey control information in their
following work Side-channel [2]. However, due to the overlap
of control signal and the data payload, the two interferes
with each other, especially in low SNR conditions. Also
using correlation based detection, the work [1] asserts that
control messages decoding can be done while receiving data.
However, this work doesn’t carefully consider where to put
the control signals.

Motivated by the work for in-band control, Hitchhike builds
the control plane on the preamble field of data packets. By
decoupling control from the payload, the mutual interference
between the control signal and the payload is minimized.

VIII. CONCLUSION AND FUTURE WORK

This paper proposes Hitchhike, a novel technique that
utilizes preamble for efficient control messages transmission.
We carefully design control codes and develop the subtraction-
detection algorithm for control messages detection. Evaluation
on 5 USRP2 nodes show that control messages carried by
preamble can be transmitted with high accuracy whereas
the operation of preamble is with limited adverse effect.
Several issues are left for future study. First, we shall extend
the implementation of Hitchhike in 802.11 Wi-Fi networks,

especially in OFDM where the preamble is different from
that in 802.15.4. Second, we will implement the applications
mentioned in Section VI that can benefit from Hitchhike.
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